
Journal of Statistical Physics, Vol. 66, Nos. 1/2, 1992 

Distribution of Cyclic Species in Network Formation: 
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The distribution of cyclic species is explored for an irreversible Ag-R-Bf_g 
model on the basis of the concept of the "m tree" which was introduced in a 
preceding report by the authors. On the assumption of equal reactivity, the 
explicit solution is derived; i.e., for a sufficiently concentrated solution 
the concentration of cyclic j-mers can be expressed as [-Rjl= 
(kRj/kL)E(f-g)D~coj/j, where kRj and k L are the rate constants of cyclic 
j-mer formation and interconnection, respectively, and 

E j /2]  j 

where c ~ = ( g - 1 ) ( f - g - 1 ) / g ( f - - g )  and [j/2] is the Gauss' symbol. For 
g ~ 1, e)j--* 1, so that the solution reduces to the A R-By i case. At a critical 
point one observes the strong divergence of the chances 32 ~j of cyclization. 

KEY WORDS: Network theory; Ag-R Bjg  model; m tree; distribution of 
cyclic species; divergence of cyclization. 

1. I N T R O D U C T I O N  

This paper  deals with the dis t r ibut ion of cyclic species in the A g R - B f  g 
model. The microscopic theory (1-6) of the b ranch ing  process has suffered 

from the two major  problems of cyclic format ion and  the dis tor t ion of 
reactivity, which have been thought  to be the origins of the incorrect  
critical behavior  (7'8) of the classical theories. Here we explore the problem 
of cyclic formation.  More  specifically, we want  to extend the theory of the 

A - R - B s _  1 model  into a more  general theory of the A g - R - B f _ g  model,  
which was unsolved in a preceding report  (9) because of its complexity. As 
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in the preceding report, (9) we assume the principle of equal reactivity and 
no excluded volume effects, which still confines the presented theory within 
the framework of a mean field theory. With this restriction in mind, in the 
following we shall derive the explicit solution for the model of interest 
under the concept of an "m tree." 

2. T H E O R Y  

Consider an irreversible process in a sufficiently concentrated solution 
where the interconnection rate exceeds the cyclization rate. A-type func- 
tional units (f.u.) can react with only B-type f.u.. Note A-type f.u. and 
consider a mean shaped tree with m unreacted A f.u. in the first generation 
(root), which we call an m tree. The first task we must tackle is to find out 
the mean number of unreacted B f.u. in the j t h  generation, namely, the 
number average of the unreacted B's, for then one will find the total 
chances of cyclization as a result of the product 

(m A's) x (unreacted B's) 

Let the total chances of cyclic j-mer formation be e j, and write it in 
the form 

~bj = M o g(1 - DA)(1 -- D B ) [ ( f - - g ) J D ~ -  1] coj (1) 

where Mo denotes the total unit number in a reaction bath, D A and DB are 
the extents of reaction of A f.u. and B f.u., respectively, and g and f -  g are 
the functionalities of the respective f.u. The reason for writing this in such 
a form will become clear in the following. Hence the problem of finding ~bj 
reduces to that of finding a general form of o)j. 

The probability that one finds m unreacted A's from g A's is equal to 

g so that there are MO(m)(1--DA)mDgA . . . .  m trees" in the system. Let 
(g-m) ~A(1--DB) and ~B(1--DB) be the numbers of B-type unreacted 
descendants in the j t h  generation whose ancestors are A and B f.u. on the 
root, respectively. Then, in general, one may write 

~bj= y' m[(g--m)~A +~B](1--DB)M o ( 1 - D A ) m D  g-m (2) 
m = l  

With the help of the equality 

~' re(g-m) ( I ' - D A ) m D  g m=g(g--1)DA(1--DA) (3) 
m = l  
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and the equality 

m = l  

one may rewrite Eq. (2) in the form of Eq. (1), that is, with gDA= 
( f -  g ) D . ,  

q~j= Mo g(1 - DA)(1 -- DB)[(f--g)YDJB-1] 

•  1} (5) 

where 

COj={[(g--1)(f--g)/gJDB~A+~B}/{(f--g)JD~ -1} (6) 

Hence the problem of coj reduces to the problem of seeking the total 
number of B descendants in the j t h  generation from the respective f.u. on 
the root. 

The number of B descendants: 

A 

\ 
a - I  - - ~  j f - ~ l \  B 

g e n e r a t i o n  

A g ' - - lJ  

g e n e r a ~  i017 

Note a transit from the ( j -  1)th generation to the j th  on the m tree. 
As is seen from the above scheme, a single A f.u. bears g A's and 
( f - g - 1 )  B's, while a single B f.u. bears ( g - 1 )  A's and ( f - g )  B's. Let 
N(A)j and N(B)j be the numbers of A f.u. and B f.u. in the j t h  generation, 
respectively, so that N(B)j=(g-m)~A+~B.  Then, one can write the 
respective numbers in the j t h  generation as follows: for j>~ 3, 

N(A); = gDAN(A)j_~ + (g - 1)DB N(B)j_ 1 

= ( f -  g)DB N(A)j_I + (g -- 1)DB N(B)/_ ~ 

N(B)j= ( f - - g -  1)nA N(A)j ~ + (f--g)DB N(B)j 

= [ ( f - g -  1)(f--g)/g]DB N(A)/_ 1 + ( f - -g)nB N(B);_ 1 (7) 
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where 

and 

N(A)I = g - m 

N(B)I = f - g  
(8) 

where 

where 

for j~>2. 

= (g-- 1)( f - -g--  1) /g ( f - -g )  (11) 

The iteration of the same operation yields 

N(A)4 = ( g -  m ) g [ ( f - - g ) D B ] 2 ( 1  + 3~) + ( g -  1)[(f--  g)DB]3(3 + ~) 

N(B)4 = (g - m ) ( f - -  g -- 1 ) [ - ( f -  g)DB]2(3 + a) (12) 

+ ( f - - g ) [ ( f - - g ) D B ] 3 ( 1  + 37) 

By induction one may suppose the j th  term to be 

j 2 

N ( A ) j = ( g - r n ) g [ ( f - g ) D B ]  j 2zj , + ( g - - 1 ) [ ( f - - g ) D B ]  j -1  ~ z k 
k = 0  

+ { ( f - - g ) [ ( f - - g ) D B ] J - ~ Z j _ l }  

-- (g--m)~A+ ~B (13) 

j 2 

Z o = Z l = l  and z j = z j - l + ~  ~ zk (14) 
k = 0  

N(A)2 = ( g - m )  g +  ( g -  1)[ ( f  --g)DB] 
(9) 

N(B)2 = ( g -  rn)( f  -- g -  1) + ( f -  g ) [ ( f -  g)DB] 

Substituting Eq. (9) for the ( j -  1)th term of Eq. (7), one obtains 

N(A)3 = (g - m) g [ ( f -  g)DB](1 + ~) + (g -- 1 ) [ ( f - -  g)DB] 2 �9 2 

N(B)3 = (g- -  m ) ( f  - g- -  1)[(U--g)DB] . 2 (10) 

+ ( f - g ) [ ( f - g ) D . ] 2 ( 1  +~) 
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ProoL Assume that the solution, Eq. (13), is true for j = p  (~>2). 
Transform Eq. (13) according to the operation of Eq. (7). With Eqs. (11) 
and (14), the respective numbers in the (p + 1)th generation become 

p - - I  

U(A)p+l = ( g - m ) g [ ( f - - g ) D B ] P - l Z p +  (g-- 1)[(f  --g)DB] p ~ zk 
k = 0  

p - 1  

U ( B ) p + l = ( g _ m ) ( f _ g _ l ) [ ( f _ g ) D B ] p  1 ~ zk 15) 
k = O  

+ ( f - -g ) [ ( f - -g )DB]  Pzp 

which are equivalent to Eq. (13). Therefore, if Eq. (13) is true for j = p, 
then it is true for j = p +  1. On the other hand, Eq. (13) is true for p = 2  
and 3 [see Eqs. (9), (10)]. Hence it is true for all p's larger than 2. 

Substituting ~A and ~B of Eq. (13) into Eq. (6), one finds 

j 2 

cos=zj 1+~ ~ zk==-zj (16) 
k - - O  

The subtraction of z s_ 1 from zj and subsequent rearrangement yields 

z j - (1-~zl /2)z i_~=(l  +otl/2)[zj_~-(1-otl/2)zs_2] (17) 

According to common convention and making use of Zo = Zl = 1, we solve 
the above equation, with the result 

z s = co s = (1/2)[(1 - ~1/2)s + (1 + eta~2) s] (18) 

which satisfies Eq. (14), including the j =  1 case. All odd powers of 
(1 +_ ~i/2)s should cancel out, so Eq. (18) may be rewritten as 

coj = ~ ~k for all j's (19) 
k = 0  

where [ j /2]  denotes the Gauss' symbol, namely, the maximum integer not 
exceeding j/2. With this information we can derive the distribution of cyclic 
species which we first sought. 

Consider one transition in an irreversible process in which the ith 
collision occurs from the ( i - 1 ) t h  state. The transition must be either an 
interconnection or a cyclization. Then for a sufficiently concentrated solu- 
tion, one may put the variation of cyclic j-mer number into the form 

3Ntq~- k R j M ~  I]coj (20) 
kL(gMo - i ) [ ( f -  g)Mo - i ]/V 
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where kRj is the rate constant of cyclic j-mer formation and kr is that of 
interconnection. 

With D A = i/gM o and D B = i / ( f -g)Mo,  Eq. (20) reduces to 

6NRj ~-- (kRfkL) V[( f  - g)JD~- ~]c@Mo(f - g) (21) 

This may be approximated by a differential equation for a large i and M 0 

(this is the case in a real system!), so that 

d[ Rj] = d(NRj/V) 

~- {(kRjkL)[(f --g)JD~-~]oofMo(f -g ) }  di (22) 

With d i=( f -g )ModDB integrate Eq. (22) with respect to D B in the 
interval [-0, DB]; the result is 

[Rj] = (kRJkL)[(f-- g)DB]iC@j (23) 

where coj is given by Eq. (19). Equation (23) is the general solution of the 
distribution of cyclic species in Ag-R-Bf_g network formation. For  an 
ideal chain, one may replace (kRj/kL) with the Gaussian normalization 
factor (3/2rc(j2)) 3/2 according to Kuhn's insight, (1~ where (j2) is the 
mean square distance from the first generation to the j th.  If g ~ 1, ~ -* 0 
and therefore coj ~ 1, hence Eq. (23) exactly converges on the A-R-Br 
case. 

C r i t i c a l  P o i n t  

The only question remaining is whether there exists a critical point (t2~ 
of cyclization, and if it exists, where it exists. To answer this question, we 
must return to the chances of cyclization Cj. If an infinitely large cluster 
appears, then the sum Z Cj must diverge. From Eqs. (1) and (18), one may 
write 

Cj oc [(1 - e l / 2 ) ( f _  g)DB]j + [(1 + ea/2)(f_ g)DB]] 

If [ . . . ]  is less than unity, one may perform the summation 

r oc 1/{1 - [(1 --c~I/2)(f--g)DB]} + 1/{1 - [(1 +~l/2)(f-g)Dn]} 
j = l  

(24) 

Clearly, as (1 ___ ~ m ) ( f _  g)DB ~ 1, a double divergence of the chances of 
cyclization occurs. From the stoichiometric theorem, however, it is 



200 

2 

% 

Oc:critical point 

I I i 

iii  i i �9 

o . ~  . . . .  

o.i 0.2 o.3 o.4 o.5 

Extent of Reaction: o h 

Fig. 1. Critical behavior of the chances ~ ~bj of cyclization in the A2-R-Br_ 2 model with 
varying f, and g fixed at 2. The summation was carried out from j =  1 to 150 (truncation 
point). Short bars indicate theretical points from Eq. (25). 

impossible that (1--~/2)(f--g)DB=l. So, the physically unrealistic 
divergence is abandoned. Hence, 

D~= 1/[(1 + ~ln)(f_g)] (25) 

which is equivalent to Spouge's gel point (12) derived from the average 
molecular weight, if one alters the definition of the extent of reaction as 
i/Mo(f-g)-* 2i/Mof; i.e., 1/(f-g)~ 2If This may be reexamined by the 

0 
i 

!o-i 

Distribution of Cyclic Species 667 

10-2 

10 - 3  

lO ~4 

Extent of R e a c t i o n :  ~B 

0 . I  0 , 2  0 , 3  0 . 4  

10 - 5  

Fig. 2. Distribution of cyclic species in the A g-R -B f  g model (g = 2). The concentrations of 
cyclic species [R1] to JR20 ] in sol phases are plotted as functions of f and the extent of 
reaction of B f.u., D m up to the gel points. Chains were assumed to be ideal; i.e., kRj/k L = 
(3/2nj)  s/2. ( . . . ) f = 4 ,  ( - - ) f =  5, ( * * * ) f = 6 .  
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direct  ca lcu la t ion  of  Eq. (1) with Eq. (19). The results are  i l lus t ra ted in 
Fig. 1; j is t runca ted  at  Jmax = 150; shor t  bars  indicate  the theore t ica l  poin ts  
of Eq. (25). As one sees, a t  the very po in ts  p red ic ted  one observes the 
s t rong divergence of  cycl izat ion (see Figs. 1 and  2). 

A C K N O W L E D G M E N T S  

We thank  Dr. K o h n o ,  Dr. Sekiguchi,  and  Prof. K a w a z o e  ( N a g o y a  
Ci ty  Univers i ty )  for useful discussions.  We also thank  a referee for a refine- 

ment  of  the so lu t ion  of Eq. (16)~ 

R E F E R E N C E S  

1. P. J. Flory, J. Am. Chem. Soc. 63:3083 (1941). 
2. W. H. Stockmayer, J. Chem. Phys. 11:45 (1943). 
3. M. Gordon, Proe. R. Soe. A 268:240 (1962). 
4. W. Burchard, Adv. Polymer Sci. 48:1 (1983). 
5. S. I. Kuchanov, S. V. Korolev, and S. V. Panyukov, Adv. Chem. Phys. 43:115 (1988). 
6. C. W. Macosko and D. R. Miller, Macromolecules 9:199 (1976). 
7. P. G. de Gennes, Sealing Concept in Polymer Physics (Cornell University Press, Ithaca, 

New York, 1979), Chapter V. 
8. D. Stauffer, A. Coniglio, and M. Adam, Adv. Polymer Sci. 44:103 (1982). 
9. K. Suematsu and T. Okamoto, J. Stat. Phys., to appear. 

10. W. Kuhn, Kolloid Z. 68:2 (1934). 
11. H. Jacobson and W. H. Stockmayer, J. Chem. Phys. 18:1600 (1950). 
12. J. L. Spouge, J. Stat. Phys. 43:143 (1986); Macromolecules 16:121 (1983). 


